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Master's of Science
August 1986
by John Carl Adams

An analysis is made of the effects of errors and uncertainties in
the predicting of disturbance torques on the peak momentum buildup on a
space station.

Models of the disturbance torques acting on a space station in low
earth orbit are presented, to estimate how accurately they can be pre-
dicted. An analysis of the torque and momentum buildup about the pitch
axis of the Dual Keel space station configuration is formulated, and a
derivation of the Average Torque Equilibrium Attitude (ATEA) is pre-
sented, for the case of no MRMS (Mobile Remote Manipulation System)
motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion.

Results showed the peak momentum buildup to be approximately 20000
N-m-s and to be relatively insensitive to errors in the predicting tor-
que models, for Z axis motion of the MRMS. The peak disturbance momen-
tum for no motion and Y axis motion of the MRMS was found to vary
significantly with model errors, but not exceed a value of approximately
15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error.

Minimum peak disturbance momentum was found not to occur at the ATEA
angle, but at a slightly smaller angle. However, this minimum peak
momentum attitude was found to produce significant disturbance momentum
at the end of the predicting time interval.
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NASA's plans for a permanently orbiting space station have raised
many interesting questions in the area of attitude control, and partic-
ularly in the area of momentum management. dver a long operational
lifetime, even the relatively small torques of the environﬁent in low
earth orbit can provide significant momentum buildup that must be dealt
with in some manner; either through the use of magnetic torquers, CMG's

(Control Moment Gyros), or thrusters.

There are many sources of unwanted momentum on the space station.
The two most significant result from the aerodynamic torques and gravity
gradient torques acting on the spacecraft. But there are many other
sources, such as, crew motion, docking, and MRMS (Mobile Remote Manipu-

lation System) movement.

The usual method for dealing with this unwanted momentum would be to
allow the momentum to increase to a certain point and then dump it using
the RCS jets, magnetic torquers, or just tilting the spacecraft and
usingv the gravity gradient torques to counteract this momentum. It has

been shown [5] though, that the disturbance torques expected on the

BRECEDING PAGE BLANK NGT Fiod =

13
baut_ ()} B TONALLT s



space station will require a large momentum storage if momentum exchange

devices are to be used to neutralize these disturbances.

Because of this, it has been proposed that a new system for control-
ling the buildup of unwanted momentum be impiemented, namely one which
predicts in advance the disturbance torques on the space station, rather
than dealing with their effects after-the-fact. Such a predictive
momentum management system would allow a more optimal placement of the
attitude of the space station so that disturbance torques might cancel

each other. This, in general, reduces the momentum storage requirements

placed upon the momentum exchange devices.

One example of such a predictive momentum management scheme is to
fly the space station at an 'average torque equilibrium attitude'. It
is desired that the space_stations attitude remain constant, but for a
given period of.time what should this attitude be? The average torque
equilibrium attitude is such that if we can predict the disturbance tor-
ques on the space station for a time T in the future, then at the end of
that time the integral of all the disturbance torques, and thus the net
momentum, will be zero. Flying the space station at such an attitude
has been shown to reduce the momentum storage requirements for attitude

control by a factor of 4 (see fig. 1).
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The goal is to find an attitude in which to orient the spacecraft
such that, for a given time, the peak momentum storage requirement on

the attitude control system is minimized.

The problem with a predictive system is that accurate knowledge of
the torques expected on the spacecraft must be had in advance in order
to choose an attitude such that the unwanted momentum is zero after a

given period of time.

Here is a list of possible sources of disturbance torques;
1. Gravity Gradient forces
2. Aerodynamic drag
3. Docking
4. MRMS motion
5. Crew motion
6. Venting

7. Solar radiation pressure

8. Radiation pressure from re-radiated and scattered
radiation from earth

9. Frictional torques between rotating and non-rotating components

10.Changes in inertia due fuel consumption, solar
panel motion, crew motion, MRMS motion, etc.

The prediction of these torques requires accurate modeling or meas-

urement of many of the characteristics of the space station and its

15



environment. Some of the more important quantities that need to be spe-
cified are;

1.Vehicle Inertia Matrix- An accurate model which includes the
changes due to mass shifts involved with MRMS motion, solar panel
rotation, docking, crew motion, venting and fuel consumption.

2.Vehicle Drag Coefficient- A model which includes changes due to
orientation, solar panel motion, shadowing, changes in atmospheric
conditions (i.e. composition, density), and configuration
changes (i.e. MRMS position, docked vehicles)

3.Vehicle Center of Mass and Center of Pressure- Again, a model
which accounts for changes in configuration due to docking, MRMS
activity, etc.

4 .Vehicle Environment- Atmospheric density and composition, Gravita-
tional anamolies, Earth's radiation and re-radiation, solar radi-
ation and its fluctuations.

5.Vehicle Position, Velocity, and Attitude

16



This chapter gives an assessment of the sources of disturbance
momentum on the space station. It presents for each disturbance torque
the mechanics of the disturbing phenomena, the mathematical models
invoived with prediction of these torques, and the assumptions and sim-
plifications that have gone into each model. It also provides the
intended sources for each of the parameters in the models, be it direct
measurement or estimation, and an application of these torque predicting
models to an example configuration of the space station; the dual keel

configuration.
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Figure 1. Space Station, Dual Keel configuration

There are many different disturbance torques that act on the space
station, some of which can be characterized as forces acting at a cer-
tain moment arm from the center of mass of the station (r X F), and oth-
ers which are more easily characterized as a change in the space
station's angular momentum (dH/dt). In table 1, the disturbance torques
that will be dealt with in this paper are separated into these two cata-
gories and into two sub catagories. Those torques characterized as
forces acting'at moment arms are separated into those that act as body
forces and those that act as surface, contact forces. And of the tor-
. Ques that are characterized as a change in momentum, some are the result
of changes in the space station's inertia, and some are due to changes

in the angular velocity of the station's orbit.
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Table 1. Disturbance Torques

r X F dH/dt
Body Contact dl/dt dw/dt
Forces Forces
Gravity Aerodynamic Docking Non-
Gradient Torques circular
MRMS motion orbits
Solar
Magnetic Radiation Solar
Pressure Panel
Motion
Earth
Radiation Crew Motion
Pressure
Radiator
Venting Motion
Torques
Consumable
Docking Depletion
Torques
Antennae
Friction Motion
Torques
Station
Crew motion Growth
Station
Reconfig-
uration

The torque, and corresponding‘angular momentum, disturbance associ-
ated with each of these phenomena are to be expressed in a coordinate
frame fixed in the vehicle. Altogether, there are five coordinate
frames that are of importance to the dynamics of the space station.
Their definition and the transformation matrices between them allow for
the characterization and resolution of the forces and torques that act

upon the space station. These frames are;

19



Inertial

Sun-fixed

Local Vertical/Local Horizontal
Vehicle C.0.M.

Component C.0.M.

The inertial frame is important because the radiators are to be
fixed inertially, so to determine the inertia change due to their
motion, a transformation is needed from inertial coordinates to vehicle

coordinates.

The same reasoning applies to the solar panels, which are to remain
sun-fixed. A transformation between vehicle frame and a sun-fixed frame

is needed to specify their motion.

The basic approach of fhis ana}ysis is that the space station is
assumed to be a combination of several components, each of which can be
characterized by its own mass, inertias, and body-fixed coordinate
frame. 1In general, a torque or force can be defined in the components
frame more easily than in the vehicle frame. So in the final analysis
these component torques must be combined and transformed into the total

vehicle frame.

20



2.1 GRAVITY GRADIENT TORQUE

One of the most significant torques on the space station will come
from the ''gravity gradient" forces, which arise due to the fact that
only the center of mass of an object in orbit is in force equilibrium
(see Figure 2 on page 21). The.net force on any other incremental mass

~

H -
183

y

Center of
Earth

Figure 2. Net Force on an Object in Orbit

= R + (1)
@ " A

(<]
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Mo = /o R X [=u (R # R dml (2)

where;

R, = Radius from the center of the earth to space station
center of mass (C.0.M.)

R

Radius from space station C.0.M. to incremental mass dm

vy = earth's gravitational constant (GHJ

M, = Gravity Gradient moment about C.0.M. of station

1 = 1 (3)
R+R|®  (R,2+2(R,*R)+R?)3/2
o [+] ]

(from Law of Cosines)

- 1 (4)
R, (1+2(R,°R) /R,2 + R?/R 2)3/2
~ 1/R3[M1-3(R,RI/R2+ .... ] (5)
(from Binomial Theorem)
Mee = /5 R X [-u/R3(1-3(R,*R) /R 2) (R_+R) Jdm (6)
and since R X (R+R) = R X R
Mec = %5 ;“[31 -3(R;*R) /21 (R X R,)dm (7)
RO
=/, -»/R,3 (R X R)dm (8)
i (+ 0, since /Rdm = 0 about the C.0.M.)
+ J/ 3u/R.5 (R*R) (R X R))dm (9)
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" = 3n2/R2 /, (R°R) (R X R )dm (10)
where; n = Ju7R°3

y Perpendicular
to Orbit Plane (POP)

)

v, x d
orbit T
path '
X,y,2- LVLH frame
x',y',2'- Vehicle frame
- y
z z
Local Vertical
Roll- ¢ Pitch- 6 y' e _ Yaw- y
y _ ¥y — ¥y =
Yyioo oS \ "2“:';— ! x' >
x ! ;
¢ \ x / *2
\ '
\ +
\ i
4
n% ! Q{W
z z) z' z, z

Figure 3. Transformation from body frame to LVLH frame

In order to obtain the gravity gradient torque in the body coordi-
nates it is necessary to transform the earth radius vector into body
coordinates. Assuming roll(¢), pitch(e), and yaw(¥) as the three euier

angles, the transformation matrix from the LVLH frame to the body center

of mass frame is;

23



LVLHD = cosV¥coseo sinésindcostV + sinVcosd -sinbcosdcosy + sindsiny
-sin¥cos® -sinosindsind + cosVcosd sindcosdsin¥ + sindcosV
sing ~-sindcoso cosbcosd

(11)

and using the small angles approximation; cos® = 1, sine ~ ¢, 02 = 0

=y -0d¥ + 1 oV + ¢

o Tivwp = 1 b+ ¥ -p + &V
0 -6 1 (12)

TLVLH-b = 1 ¢ -9 .
-y 91 ¢
6 - 1 : (13)
RoLvin Fg Roo * [Tivin-ud RoLvin « Ry = Ry -?b
Ro 1 (14)
R=1[x]
Y
z | : (15)
. R * R, = (-6x + &y + 2)R (16)

RXR, =R, y = d;z
-x = 8z
éx + oy (17)
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(RRJ) (R XR) = -0 xy+dy2+yz+64x2-d2yz-bz? R’
0x2-dxy-x2+02x2-0dy2-022 (18)

-90x2+d2xy+dX2~02Xy+0dy2+0y2

= [ -exy + yz + ¢(y?-2?) ] R;? dm
-dxy - xz + 0 (x2-2%) (19)
bxz + 0y2z
and with the definitions for moments and products of inertia;
I, = J(y3+22)dm 1,, = £ (xy)dm
I, = / (x*+2%)dm I, = Jp(x2)dm (20)
I, = /; (x¥+y?)dm 1, = /(yz)dm

So the linearized gravity gradient torque in body coordinates becomes;

Mg = 3n2 [ -6  + I+ &(I,-1)
~1 - 10+ e (171 (21)
oL, + o1,

25



2.2 AERODYNAMIC TORQUES

The density of the atmosphere falls off exponentially with altitude,
but even at the space station's nominal altitude of 250 nautical miles
(450 km) the effects of atmospheric drag can be felt, especially for
large spacecraft over extended periods of time. However, in this region
of the atmosphere, the exosphere, the density is so low that the princi-
ples of contimuum aerodynamics no longer apply. Since the mean free
path of the molecules at this altitude is greater than the character-
istic length of the vehicle, each particle interaction with the surface
of the spacecraft must be considered as independent and uninfluenced by
another molecule's interaction. Another assumption that can be made is
that the velocity of the vehicle is much greater than the thermal veloc-
ity of the molecules. Because of this, the atmosphere can be modeled as

a molecular beam, with all incoming particle velocities parallel.
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Figure 4. Structure of Upper Atmosphere

When a particlie collides with a surface, the resulting interaction
can range from a totally inelastic collision where the particle is
absorbed by the surface, to a totally elastic collision whe?e the normal
momentum of the particie with respect to the surface is reversed and its

tangential momentum is left unchanged. (see Figure 5)

Re-emitted
particles

Specular Reflection Diffuse Reflection

Figure 5, Specular and Diffuse reflection

To characterize this range of interactions for a given surface of a

given material it is customary to define two 'momentum accommodation

27



coefficients', one for the tangential momentum and one for the normal

momentum.
o = Tangential momentum = Pr;i = Prr
accommodation coefficient — Py, (22)
o' = Normal momentum *= Pni = Ppr
accommodation coefficient Py - Pye (23)
where;

Pr; = Tangential momentum incoming particles
P;. = Tangential momentum reflected particles
Py; = Normal momentum incoming particles

Py~ = Normal momentum reflected particles

Pye ™ Normal momentum re-emitted particles

When both of these coefficients are equal to 1, then the particle
interactions are completely inelastic, which is diffuse reflection.
When both of the coefficients are 0, then the particle interactions are
completely elastic, which is specular refléction. In reality they will
be somewhere in between, with specular reflection generally }ncreasing
for an increasing angle of incidence between incoming particles and the
normal to the surface. Some experimental values for o and o' are shown

in Figure 6. [1]
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Figure 6. Some Experimentally Determined Vaiues for ¢ and o'

The collision process is a complex physical and chemical inter-
action, and the behavior of absorbed and refiected particles varies for
each specific surface composition and the type of incoming particles.
However, a simplifying assumption can be made due to the fact that in
the steady state, the space craft surfaces will not be 'clean', but will
be contaminated by a layer of atmospheric particles both stuck and chem-
ically bonded to the surface. The most notable of these contaminants is
monatomic oxygen. This layer of contaminants produces a more homogene-
ous surface condition on the overall spacecraft, and makes the defi-

nition of the momentum accommodation coefficients easier,

In general, a layer of surface contaminants greatly raises the tan-
gential momentum accommodation coefficient, to about the .85 to .80
region, for all types of surface materials, except at very high angles

of incidence ('grazing' angles). The normal momentum accommodation

29



coefficient is less affected by surface contamination but this coeffi-

cient tends to vary less from material to material.

Once the net momentum transfer from particle to surface is charac-
terized by these momentum accommodation coefficients, then a drag coef-
ficient equivalent to that for continuum flows can be formulated as a
functidn of these coefficients and the surface's attitude with respect

to the incoming flow. [2]

X,y,2z fixed to surface
x normal and into surface

velocity of

[\
X
incoming k\\\\\\\\\N

particles

Figure 7. Frame of reference for surface

The drag coefficients for each direction in the surface are;
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Cro = [((2=0") SU VT + (0" /2) VT /T) &7 (S0a A2

*+(2-0") (1/2+ (Su,) ) + ((0/2) VT u/T) (1+ert (su,)) 1/52
Cp, = (ou,/52) [SVme(Sux )+ u 62 (1+erf (Su,))]
C,, = (0u,/52) [Svme (S 4 y 52 (14erf (Su))] (24)

z

where u = u,
Uy
uz

= ynit velocity vector in surface frame
S = ratio of vehicle speed to average molecular speed(=10)

T,/T = ratio of wall temp. to ambiant temp. : (=.25)

Once these drag coefficients have been caiculated for a surface,

then the forces exerted on that surface follow as;

F, = 1/2 pV3AC,,
F, = 1/2 pV3AC, :
F, = 1/2 pV2AC,, (25)

where,

p = atmospheric density
A = area of surface normal to flow
V = magnitude of velocity

And the torque about the center of mass due to the aerodynamic force

on each surface is simply;

M, =r, XF, (26)
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To find the total aerodynamic moment it is necessary to sum the
moments from all the individual surfaces. What complicates this is the
fact that for aifferent orientations of the vehicle, some parts of the
spacecraft may be partially or totally shielded from the flow by other
parts of the spacecraft. This is known as ‘'shadowing'. Realizing this,

the total aerodynamic moment about the center of mass is;

M,=3 r, XF, (27)

where | = space station surfaces exposed to the filow

It may be more convenient, however, to define the moment in terms of

two other quantities, Fep? and C., where,

rep = radius vector from center of mass to center of pressure

=2 rA /2 A, (28)
C; = total space station drag coeff.
= 2. C, (29)
where, again, | = spacecraft surfaces not shadowed

Using these definitions, equation (27) can be rearranged to form,

My = rep X 1/2 pV2ALC, (30)
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There are three limiting factdrs in the degree of accuracy with
which the aerodynamic moment M, can be predicted. The first limitation
is in the ability to determine C., the total drag coefficient of the
space station. This is accomplished computationally by simplifying com-
plex spacecraft geometries into more basic surfaces such as flat plates,
spheres, rectangular solids, cylinders, etc., and then predicting which
surfaces will be shadowed and to what extent by using the geometry of

the space station's configuration and attitude.

Also, the values for the momentum accommodation coefficients are
derived experimentally, and the conditions of the space station's
external surfaces in the space environment will not be an exact match
for those in an experimental environment. Simplifications in the space
stations geometry and the experimental! nature of the accommodation coef-
ficients both limit the accuracy of the total vehicle coefficient of

drag.

One way of improving tha accuracy of the momentum accommodation is
to perform the measurements similar to those done in laboratory molecu-
lar beam experiments on board the space station itself [34], using the
incoming atmospheric particles as the molecular beam. This would avoid
the problem of simulating the surface contamination the spacecraft would

encounter in orbit, in the laboratory.
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Another limiting factor is the determination of the spacecraft's
velocity. This is essentially a navigation problem and it doesn't
appeaf that there will be any problem achieving the desired accuracy.
Using the Global Positioning System, at the proposed altitude of the
space station, accuracies 45 to 60 feet in position and .2 feet/sec in

velocity have been shown to be feasible. [37]

The strongest limitation on the ability to determine the aerodynamic
torque is in the prediction of the atmospheric density. At the space

station's altitude the density is extremely variable. In general, den-

sity decreases exponentially with altitude, but it has also been shown
to be dependent on the incoming flux of solar radiation, (see Figure 8)
particulariy at the 10.7 cm wavelength, and is aiso dependent on the
variations in the earth's magnetic field. (see Figure 8) It can change
by up to three orders of magnitude over the enfire solar cycle.[13]
Some of the variations are random in nature while others appear regular-

ly. Some of the regular variations are;

1. An 11 year solar activity cycle variation
2. An annual variation

3. A semi-annual variation

4, A 27 day solar rotation variation

5. A diurnal variation due to earth's rotation

6. Magnetic disturbance variations
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The annual variation in atmospheric density is due to the changing
composition of the constituent gasses of the upper atmosphere with lati-

tude and season.
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The semi-annual variation is a product of the interaction of the
earth's magnetic field with the solar wind. This effect reaches .its
minimum in July, its maximum in October or November, and a secondary

minimum and maximum in January and April, respectively.

The variation with the highest frequency is the diurnal variation.
The diurnal density 'bulge' reaches its maximum at a point lagging the
subsolar point by about 30°, or 2 hours. It varies roughly sinusoidally

with longitude, about an average value;

(1 + .5 cos(x - 30°)) (31)

P = Pave

where A = the angular separation between the space station and the sub-

solar point.

2.3 SOLAR RADIATION TORQUE

The incoming solar radiation carries with it some incoming momentum.
If the radiation is thought of as a stream of incoming particles, pho-
tohs, each with a momentum proportional to its energy, then the situ-

ation is analogous to the aerodynamic drag case, where incoming
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particles interact with the projected area of of the surfaces of the

spacecraft resulting in a net exchange of momentum.

The analogy is carried further when the types of possible inter-
actions are considered. As in the case of aerodynamic particle inter-
actions, photons can be either absorbed, refiected diffusely, or

reflected specularly. (see Figure 10 on page 37)

N N
\ INCIDENT
neoe INCIDENT
[ [
ABSORPTION SPECULAR REFLECTION DIFFUSE REFLECTION
Absorption and Reflection of Incident Radiation
Figure 10. Possible photon interactions with space station
surfaces

To characterize what portion of the incident radiation experiences

e;ch of the different interactions, three coefficients are defined;

o, = coefficient of absorption

opp = coefficient of diffuse reflection
ops = coefficient of specular reflection
where 0 < o4,0pp10gg < 1

and o, ¥ opp * Op = 1

These coefficients represent the fraction of the incoming momentum

that is either absorbed, reflected diffusely, or reflected specularly,
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for a given surface of a given material, and like the momentum accommo-

dation coefficients, they are determined experimentally. [26]

The total energy flux radiated from the sun is known as the 'solar
constant', S, and is = 1.35X10° J/m?-sec at the radius of the earth's
orbit. The solar constant varies annually by about 6% due to the eccen-

tricity of earth's orbit around the sun. The momentum flux is;

p=S/c (32)

p is in the outward radial direction from the sun. and ¢ is the speed

of light, = 3X108 m/sec.

If we define a coordinate frame that is fixed to the surface of the

spacecraft; (see Figure 11 on page 38)

incoming normal to surface

momentum

Figure 11, Surface coordinate frame, incoming momentum
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with u being a unit normal into the surface, and with uy being 2 unit
vector in the incident momentum direction, then the force imparted to

the " surface by each type of interaction is;

specular reflection-  F.., = 2pcosé (Acose)u,

= 25/c cos2eAu, (33)

diffuse reflection- Feos = P(Acose) (u, + (2/3)u,)

= S/c (Acose) (u, + 2/3 u,) (34)
absorption- Fay = p(Acose)u,
= S/c (Acose)u, : (35)

Specular reflection is simply a reversal of the normal component of
the incoming momentum, while diffuse reflection causes the net momentum
transfer to be along the the direction (up + 2/3 u). Absorption causes
a force along the direction of incoming momentum, u,
The total force on this surface can now be expressed by incorporat-

ing the absorption and reflection coefficients;
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Fpi = Solar radiation pressure force

= 0,Fui * opsFrsi + oppFap;

= SAcose/c [(o,+opp) uy + 2(opgcos8+0y,/3)u,] (36)

Expressing the force in a coordinate frame that is norma! and tan-

gential to the surface can be accomplished by replacing the vector u, by
u, = coséu, + sinou .. The resulting expression is;
Fo; = SAcose/c [(o,+op,) cosbu,
+ (o,8in6+oy, (2/3 +sin6)+20p.cos0)u,] (37)

The associated moment for that surface about the center of mass is,
May = 1y X Fgy (38)
And summing across the entire vehicle gives the total moment due to

radiation pressure;

M = 2, ry X Fpy (39)
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where the summation is over those surfaces exposed to the sunlight, thus

eliminating 'shadowing' effects.

2.4 EARTH EMITTED AND SCATTERED RADIATION TORQUES

The sun is not the only source of radiation which can place a torque
on the space station. Another important source of radiation is the
earth itself. The ea;th can radiate in fwo ways, first as a black body
it emits in the infrared range, and second it scatters incoming solar
radiation. On average, the earth scatters 34% of the incoming solar
flux[9]), and if we assume that the earth eventually re-radiates all of
the energy that is incident upon it, the amount of radiation energy
emitted in the IR range is 66% of the incoming solar energy flux. The

corresponding momentum flux from this radiation is;

P = P mR_2(.34)
s¢ - (40)

<]

Pir = P,7R 2(.66)
T (41)

[~]
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where; R, = Radius of the earth
R, = Radius from center of earth to space station
P, = Incoming solar momentum flux

The incoming solar radiation is intercepted by the projected area
the earth presents to the sun, wR.’. The next assumption is that both
the scattered and emitted radiation are radial in direction with the IR
radiation being emitted over the entire surface of the planet, and the
scattered radiation only being emitted from the illuminated side of the
planet. The amount of momentum reaching the spacecraft must therefore
be divided by the surface area into which the radiation is being
divided, which is 4nR 2 and 2nR ? respectively. The assumption that the
scattered momentum is radial becomes suspect near the division between

day and night in the orbit.

The forces and torques due to this momentum flux from the earth can
be found by using the same procedure as outlined for the solar radiation

torque. The momentum flux defined above is simply substituted for that

of the direct solar radiation. But already it can be seen that these
torques will be much smaller than those from direct solar radiation, due

to the division by the surface area of a sphere with the orbit's radius.
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2.5 MAGNETIC TORQUES

When in orbit, there will be an interaction.between the earth's mag-
netic field and the net magnetic dipole of the space station, arising
from current loops or permanent magnetism. Although the spacecraft may
be designed such that the net magnetic dipole is approximately zero,
there will be some resfdual that will interact with the earth's field to

produce a torque;

M,=DXB _ (42)

where M, = magnetic torque about c.o.m.
D = residual magnetic dipole of space station
B = earth's magnetic field (in LEO =.1 gauss)

To accurately determine this torque it is necessary to be able to
accurately define both D and B The earth's magnetic field can be mod-
eled as a magnetic dipole centered in the earth, with a dipole strength
mwys With an axis that protrudes from the earth's surface at 78.5° N lat-
itude, 69.0° W longitude. It varies with altitude as 1/R® and is also
time varying due to the bombardment of charged particles from the solar
wind. The field is also latitude and longitude dependent, but still a

-complete model can be formulated.
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The magnetic field potential is;
V(r,0,é) = aX X (a/r)™' 3,.." (g,"cosmé + h_"sinme)P " (o) (43)

where;

a = equatorial radius of the earth

g.".h," = Gaussian coefficients (empirical)
r = geocentric distance

¢ = colatitude

¢ = east longitude
P."(¢e) = Legendre functions

The n=1 terms are called 'dipole', the n=2 'quadrupole'’, and so on.

It is easier and more accurate in view of the time variations due to
“magnetic storms', to directly monitor the magnetic field vector with an

on-board magnhetometer.

Determining the magnetic dipole of the space station is not as sim-
ple a measurement. Dipoles arise from three sources;
1. Current loops and permanent magnetism
2. Eddy currents

3. Hysteresis effects
The first source is the dominant one, and also the one most easily

‘accounted for in design, either in an attempt to null the dipole or use

it to produce a control torque. What is needed is a value for the resi-
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dual magnetic dipole for each component of the space station, so that a
value for the ;otal residual magnetic dipole can be obtained by adding
the component values vectorially. Whether these dipoles can be measured
in orbit or must be measured at the time of the components manufacture
is unclear, as is the question whether they will vary significantly with

time.

The average expected magnetic torque on the dual keel space station
is on the order of .0001 N-m, while the maximum expected torque, assum-

ing a failure which causes the main y axis truss to be the current loop,

is on the order of .01 N-m.

2.6 INERTIA CHANGE TORQUES

The desired attitude for the space station is one which keeps the
stations 2z axis aligned with local vertical. This will require that the
station maintain a constant angular velocity equal to the spacecraft's
orbital angular velocity(w,). The angular momentum of the space craft

will be;

H= lo, . (44)
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Any change in the space stations mass or configuration will lead to
a change in the total inertia matrix of the vehicle. Since the stations
angular Qelocity is constrained to rgmain at orbit rate, the angular
momentum must change, and thus a disturbance totque results on the
spacecraft.

"d - WOXI”‘»O

+ (dI"/dt)w, + I'de,/dt
' (45)

Mg = d @) o,
dt (46)

There are several ways in which the space station's inertia can
change. These are some, ranked according to how big an impact they have
on the total inertia;

1. Station growth - module addition

2. Station reorganization - module movement

3. Docking - Shuttle orbiter or OTV

4. Motion of the Remote Manipulation System (RMS)

5. Sotar panel motion

6. Radiator motion

7. Crew motion

8. Consumable depletion - fhel.water.air.food.garbage.etc.
9. Antenna, and other platform, motion

10. Motion due to structural flexibility
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When the space station is considered as a combination of rigid body
components, each of which can be characterized by its own inertia and
mass, then any change in the total vehicle inertia can be described as

some combination of these four sources;

1. Component Rotation
2. Component Translation
3. Change in Component Inertia

4. Change in Component Mass

The inertia of the entire space station can be found as a function
of the component inertias, I'',, the component masses, m., and the radi-
us vector from the overall vehicle center of mass to the component cen-

ter of mass, Rc.

center of mass, component

center of mass, vehicle

Figure 12. Relationship of C.0.M. Component and C.0.M. Station
Frames

'I' c = Tc-bI"cTTc-b
(47)
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where I''_ = component inertia matrix in component frame

1'. = component inertia rotated into vehicle frame

and Tc_b = rotation matrix from component frame to vehicle frame.
RC = ch
Rey (48)
RCZ
d, = separation between x, and x_ axes
= VRZ._ + RZ_
R cy +R cz
- ‘, ! !
dy R (=4 + R c2
—— (49)
dz = R =33 + R cy

The component moments of inertia translated into the vehicle axes
are;

ICX - I'CX + mCd2X
I, = I'c, + m.d? ~ (from Parallel Axis Theorem) (50)

I = I'c, + md?,

cz

And the component products of inertia transiated into vehicie axes
are;

chy Ilt:xy + mcRny
Iexz I:cxz + mR,R, (51)
Teyz = Tleyz * m.R R,
R E
ex''ey ex ez o Y €%
“RexRes -RcyRcz Rt R (52)

which can be written more compactly as,
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I.=I'c+m (R R)E - RRT) (53)

where [ is the identity matrix
.. Total station inertia;

I=3 (TL"T" + m_((R‘RJE - RR.T))
(54)

In order to find the inertia change torques, this expression for the

vehicle's inertia matrix must be differentiated with respect to time.

dl/dt = 3. [d/dt (TI.T")+ dm_/dt ((R,*R)E - R.R.")
+ md/dt ((R_*RDE - RR.T)] (55)
= 3 [d/dt(MITT + Td/dt L) TT + TId/dt(TT)
+ dm_/dt ((R_*R)JE - R.R.")
+ m.(d/dt (R.*RJE - d/dt (R.R.T)) (56)

For simplicity, 1.'' has been shown simply as 1., and the transfor-

mation matrix, T..., has been shown simply as T.

And since d/dt(R_‘R.) = 2(V.°R) (57)

where V. = velocity of component center of mass with respect to the cen-

ter of mass of the vehicle.

And d/dt (RR.) = VR + RV.T (58)

The derivative of the inertia matrix in the vehicle frame becomes;
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dl/dt = & [d/dt(T)ITT + Td/dt L) T + TI_d/dt(TT) (59)
+ dm_/dt ((R_*R)E - RR.T)

*+ m ((2V"RJE = VR - RV,

So there are eight parameters which need to be specified to deter-
mine rate of change of the inertia of the space station so that the tor-

que due to these changes can be found. They are;

Te-ps d(T..,)/dt (Component Rotation)

Res Ve (Component Translation)

1., dl./dt (Change in component inertia)

m., dm./dt (Change in component mass)
2.6.1 Solar Panel Torgues

As an example of the torques that can be produced on the space sta-
tion due to a time varying moment of inertia, here is an analysis of the
most predominant motion, the once per orbit rotation of the solar pan-
els. The figure shows the coordinate frames and relative motion with

respect to the rest of the space station for this motion.
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Figure 13. Relative motion of solar panels

As a component of the entire space station, the solar panels are
constrained such that their center of mass does not translate with

respect to the spacecraft. Their mass and inertia are constant, and so

equation (59) reduces to
dl''/dt = (dC/dt)JCT + cJ(dC/dt)T (60)
The torque on the vehicle due to this changing inertia is;

N= mo"l' 'wo + (dI' '/dt)c«»o (61)

= wL''w, + [(dC/dt) JCT + CJ (dC/dt) Tw, (62)

0 0 0 (63)

dC/dt-[-sinede/dt 0 cosedo/dt
-cos6d6/dt 0 -sinedoe/dt

where;
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6 = Ot

.. do/dt =
dC/dt = -Q sine 0 -coso
0 0 0 (64)
cosé O sing
o (dC/dt)T = - sine 0 cose
0 0 0 (65)
~cos6 0 sine

The solar panel inertia matrix, J, is diagonal

J=[J, 0 0
0 J, O (66)
0 0 J,

So the torque becomes;

H'moxl'lw°+-ﬂ oo 0 co e o
coe 0 e -n )
0 cee 0 67)

With the vehicle angular rate only about the y axis, the second term

in the torque equation is zero and only the euler coupling term is left.

M=f0 0-n|[1,» 1, 1[0
0 0 0 112" 22" 23" -n
no0 offzr gy 1| o (68)
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M= n2123u
0
_nzlun (69)

The torque due to the solar panel rotation is the same as if they
weren't rotating, that is simply the euler coupling torque from the
vehicles rotation at orbit rate. This is because the cross terms I."
and I,.,'" in the total vehicle inertia matrix are not dependent on the
motion of the solar panels. It is also interesting to note that there
is no pitch torque, about the y axis, due to the motion. If friction is

included, there will be a pitch torque due to the solar panel motion.
2.6.2 Torgue due to MRMS motion

Determining the inertia change due to MRMS motion requires a few
assumptions. First, the MRMS itself is assumed to be a point mass with
no rotational inertia. The mass of the MRMS is assumed to be constant,
and its motion is constrained to the y-z plane in space station coordi-

nates, along paths that are paraliel to either the y or 2z axes.

The equation for the change in inertia of the vehicle (58) reduces

to

dI/dt = myeys ((2v, 8r )E - vor.7 - rov.) (70)
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where r and v, equal the MRMS position and velocity with respect to
the core/solar panels center of mass. The possible MRMS velocities con-

sidering the constraints on the motion are;

Vp = -0 i (for y-motion)

Vv

0" (71)
vp =10 ] (for z-motion)

0

‘-vmz (72)

And the MRMS position is of the form;

m
m: (73)

-~ 1O

The rate of change of the inertia matrix for motion of the MRMS par-

allel to the y and 2z axes becomes, respectively;

dl/dt = Myans 2r,,yvmy 0 O
0 “TmzVay
0 -rpVay 2rgVa, (74)
dl/dt = myeus |27 pzVaz 0 0
0 r..v -r..v
0 -r::v:: .6 " (75)
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And the torques due to this MRMS motion are,

Murms = r g
“Murms mzVmy " (76)
- o
Murms ™ 0
2Myeus” nzVnz"
“Murus myVaz" | (77)
where;
W, =10
n
0 (78)
and
Tay = Vayt (79)
Fmz ™ Vit (80)

There is no pitch torque produced by the MRMS motion along the y
axis, but there is a torque about the 2z axis. The motion along the 2

axis produces torques about both the y and 2 axes.

A plot of the pitch torque produced for an MRMS manuever when the
space station is held stationary in LVLH is shown in Figure 14 The
maneuver is motion along the 2 axis of the spacecraft from z=+20m to

2=-20m with a speed of .5 m/s.
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Figure 14. MRMS motion torques, 2z axis maneuver

2.7 FRICTIONAL TORQUES

Since the space station core is to remain nominally earth pointing,
while the solar panels are sun pointing, there will have to be some kind
of rotating hinge at the joint between the two. This interface will
have to transmit the power that is being generated by the solar panels
to the core and will necessarily involve some friction between the two.
This friction will cause an internal torque on the space station that if
correctly modeled could be useful in the decreasing unwanted disturbance

momentum.
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There are two types of power transmission that are likely to be used
at solar panel/core interface. One is slip rings which transmit DC
power and the other is rotary transformers which transmit AC power. In
the case of slip rings, friction arises due to the carbon copper contact
across which the current passes, while in the case of rotary transfor-
mers, the friction occurs in the bearings which support the rotating

coils of the transformer.

In either case, a simple mode! of the frictional forces is that they

are proportional to the normal force applied between the two contacting

surfaces. The constant of proportionality is the coefficient of kinetic
friction, u,, which is approximately constant for varying values of

solar panel anguiar velocity.
Feo= nF, (81)
The torque associated with this frictional force is;
M. =r X F, (82)
where r is the moment arm at which the friction force is applied. It is
necessary to know the geometry of the contact at the interface in order

to determine this moment arm. It is also necessary to know the geometry

of the contact in order to determine in what direction normal forces are
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being applied. The net force on the hinge will be the net acceleration
of the space station at that point, times some mass, as yet to be deter~-

mined.

In order to determine the friction torque, it is necessary to know
the coefficient of friction, the geometry of the contact, and the accel-
eration of the spacecraff at the hingepoint. The structure and size of
the slip rings or rotary transformefs are constrained by the amount of
power they are meant to transfer. The total power production on the
space station is on the order of 150 kw, which is divided between two
hinges. The interfaces are sized for roughly 75 kw of power, and this
will determine the diameter of the slip rings or transformers and thus
the moment arm of the friction torque. The total torque will be the sum

of the torques for each hinge.

A simplifying assumption can be made that the acceleration of the
space station at the hingepoint will be smali, so the normal forces will
be small and can be assumed to be constant. The friction in these types
of devices, as determined from an ESA study by the European Space Tri-

bology Laboratory [36]is on the order of 1 to 10 N-m.
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2.8 SUMMARY

Here are the maximum predicted levels of disturbance torque for all
the phenomena described in this paper;

Table 2. Maximum Disturbance Torgues

TORQUE MAXIMUM VALUE (N-m)
Gravity Gradient 21.93
Aerodynamic .118
Solar Radiation .023
Earth Radiation .052
Magnetic .01
MRMS Z-Motion 202.47
Solar Panel Friction 10.0
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In order to predict the momentum response to disturbance torques of
the entire vehicle, it is useful to first model the single axis response
of the space station. Since the pitch axis will experience the largest
aerodynamic torques, due to the offset of the center of pressure created
by the OTV and OMV berths in the dual keel space station configuration,

this is the axis that will be modeled.

Once modeled, the momentum response of the vehicle to these torques
can be found by integrating them over time, and the peak momentum the
disturbance torques will produce can be found from examining this func-
tion for momentum. This peak momentum will be the determining factor in
the sizing of the momentum exchange devices that will be needed to deal
with this disturbance momentum. Once the peak momentum is determined,
it is then possible to predict the effect that various attitudes have
upon the peak momentum value, the effect that uncertainties in attitude
have upon the peak value, and the-effect that uncertainties in the tor-

que models have on the peak momentum value.
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3.1 SIMPLE AERO/GRAVITY GRADIENT MODEL

The disturbance torques being considering in this section are;

1. Aerodynamic
2. Gravity Gradient

3. MRMS Motion

The total disturbance torque then becomes;

My = My + Moo + Mypus (83)

M, = M (o,1) (84)
The pitch torques can be modeled with differing levels of complexi-
ty, depending on whether effects such as the change in inertia of‘the

space station with solar panel and MRMS motion are to be included. A set

of simple torque models follows;

M, = -1/2 povzcb(Asprsp + Ar.)cose (1 + 1/2 cos(nt)) (85)
Mge = 3n2[(I, - I,)sinecose - I..] (86)
HMRMS = znnrnzvnzn - ZHannz(rnzo + vnzt) (87)

(for 2-motion of MRMS)

where;
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6 = pitch angle

t = elapsed time in orbit from point of maximum atmospheric density

n = orbit rate = 2=/T

p, ™ average atmospheric density

v = magnitude of spacecraft velocity with respect to atmosphere
Asp = projected area of the solar panels

A, = projected area of the core

C, = overall vehicle drag coefficient

r. = core aerodynamic moment arm

Fep = solar panel aerodynamic moment arm

I = vehiclie inertia

Mypus = Mass of MRMS

rp = position of MRMS with respect to C.0.M.

v, = velocity of MRMS with respect to C.0.M.

The assumptions made in formulating these simple equations for

disturbance torgques on the space station are;

1‘

The total momentum built up over time is simply the integral

Solar Panels not rotating
Distance to C.0.P. constant over time
The drag coefficient doesn't change with attitude

The inertia of the vehicle doesn't change with solar panel
MRMS motion

the

and

There are no shadowing effects in the aerodynamic or radiation

torques

The atmosperic density variation is a simple cosine model of the

diurnal component of the variation

these torques over time.

H(e,t) = £t My(6,1) dt
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If we consider only the aerodynamic and gravity gradient torques,
and then only the simple models for these torques, the expression for

the momentum of the spacecraft as a function of time and attitude can be

found.
M, = K,cose (1 + 1/2 cos(nt)) V (89)
Mo ™ Kosinecose - K, (90)
Where;
Ky = =1/2 pv3C, (A ry, + Acr) : (81)
K, = 3n2(I, - I,) (92)
Ky = 3021,

H(o,t) = /' M, + M dt

= /ot[K,cose (1 + 1/2 cos(nt)) + K,sinécose - K,ldt
(93)

H(e,t) = (K,cose)t + (K,/2n cose)sin(nt) + (K,sinécose)t - Kt (94)

H(o,t) = (K,cose + K,sinecose - K,)t + (K,/2n cose)sin(nt) (95)

For this simple model, the disturbance momentum is just the superpo-

sition of a linear and a sinusoidal term.
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The Average Torque Equilibrium Attitude (ATEA) is, for pitch alone,
the angle at which if the spacecraft is fixed for a given time T, the

net momentum buildup is 2ero.

H(6,,T) = (K,cos6,)T+ (K,/2n cose,)sin(nT) + (K,sin6,cos6,)T - K,T = 0

(96)
H(e,,T) = (K,cos8, + K,sine,cose, - K;)T + (K,/2n cose,)sin(nT) (97)
If we choose the time T to be a mulitiple of the orbit period T,

where T=2n/n, then the sin(nT) term is zero, and we are left with this

condition to solve for 6,;
K,cos0, + K,sine,cos6, - K, = 0 (98) -

This is a transcendental equation, and as such cannot be solved
explicitly for the ATEA, 6,. But if the constants K,, K,, and K; are
known, then an iterative solution for ¢, can be set up.

0, = sin ' (1/K, (K;/cos6, - K,)) (99)

To find the peak momentum over the time period T, it is necessary to

examine the extremums of the function H(6,t) by taking the derivative of
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H(6,t) with respect to time and setting it equal to zero. Differentiat-

ing with respect to time yields the original torque expression.

dH/dt = [K.cose (1 + 1/2 cos(ntp)) + K,sin6cose - K3]

= (K,cose + K,sinécosé - K;) + (K,/2 coso)cos(ntp) =0

(100)

“t, = 1/n cos”' (K;_= K,cose - K,sin6cose) = time of peak momentum
(X,/2) coso (101)

By substituting this expression for the time of peak momentum build-
up on the space station into the expression for the momentum (95), the
peak momentum buildup as a function of the attitude at which the space-

craft is held can be found.

H, = (K,cose + K,sinecosé - K,) (1/n)cos™' (K;= K,cose - K,sin6cose)
K,/2 cosé °

+1/n V{(K,/2) cose)? - (K; - K,cos6 - K,sinecose)? (102)

It is now possible to examine the effect of keeping the space sta-
tion held at various attitudes on the value of the peak momentum accumu;
lated over one orbit. The first attitude to be examined is the LVLH
hold attitude. In this attitude, ¢ = 0, and the equation for peak

momentum reduces to;
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Hy = (K, - K3) (1/n)cos™ " (2(K; = K,)/K,) + (1/2n) VK2 - 4(K, - K,)?

(103)

This value exists only if |Ky - K;] < K,/2 which means that the
cosine terms in the momentum equation are not overpowered by the linear
terms in such a way that there are no extremums.of the function in the
interval 0 s t S T. Even if the value of Hp exists, it may still only
be a local maximum or minimum, and intuitively, the max.imum momentum
buildup for one orbit should be at the end of the orbit, at t = T, At

the end the momentum is;

Hy = (Ky =~ K)T + (K,/2n)sin(nT)

= (K, - KT (104)

If the space station is heid in ATEA, then the peak momentum

expression reduces to;

H, = K,/2n cose, (105)

To compare these two peak values, it is necessary to evaluate the
constants numerically., The parameters for the dual keel space station

are defined in Table 3 on page 68.
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Table 3. Dual Keel Parameters, Solar Panels Fixed, No MRMS

Ay, = 1974.64 m?

rep = +.3709 m

A, = 261.17 m?

r. = =5.0672 m

I, = 62105091 kg-m?

1, = 45995243 kg-m?

I, = 5930594 kg-m?

M, = 10000.0 kg (w/payload)

M. = 167869.2017 kg

My, = 5510.1998 kg

Po ™ 1.5 X 10°*2 kg/m®

v = 7624 m/s

n=1.1188 X 1073 s"!

For these values the ATEA pitch angle is;

6, = -23.6°
And the peak momenta are;

Hp(LVLH) = -124585.64 N-m-s

Hp(ATEA) = 35,28 N-m-s

For this simple model, the ATEA hold is much better that the LVLH

hold. This is because the Dual Keel

68
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balanced design, so the dominant torques come from the gravity gradient.
The ATEA is such that the gravity gradient térques are in equilibrium,
so when ihe space station is moved away from ATEA and held in LVLH, a
significant disturbance momentum is created that must be dealt with.
That the difference is so large is only the case of this simple model,

which is subject to the assumptions outlined earlier.

3.1.1 Simple Model with Solar Panel Botatl

If the solar panel motion is considered, the torques are of the same
form as before, except that now the projected area of the solar paneis

to the incoming atmospheric particles is a function of time.

M, = =1/2 p V3, (Agre, + Acro)cose (1 + 1/2 cos (nt)) (106)
Mg = 3n2[(I, - I,)sinbcose - I ] (167)
where

Agp = Rgp |cos(nt) | (108)

So the torque becomes;
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M, = K,cose (1 + 1/2 cos (nt))

+ K,'cose (1 + 1/2 cos(nt)) ( cos(nt) , for 0<tsa/2n
- -cos(nt) , for =/2n S t S 3#/2(109)
cos(nt) , for 3n/2n £ t £ 2n/n

+ Kzsinecoso - Ky

Where;

K, = =1/2 pv2CpA r. | (110)
Ki' = =1/2 pv3CoAg Ty, (111)
K, = 3n2(I, - 1) | (112)
Ky = 3n2I (113)

Integrating this expression for torque over time yields a new
expression for the disturbance momentum that takes into account the

rotation of the solar panels.

H(e, t) = K,cose(t + 1/2n sin(nt))

+ K,'coso [(1/n sin(nt) + t/4 + 1/8n sin(2nt))
0sSst < «w/2n
(2/n + w/4n - 1/n sin(nt) - t/4 - 1/8n sin(2nt))
#/2n £ t S 3n/2n
(4/n - w/2n + 1/n sin(nt) + t/4 + 1/8n sin(2nt))
3r/2n S t £ 2n/n

+ (K,sinécose - Kyt

(114)
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The assumption that the variation in spacecraft inertia due to the
rotation of the solar panels can be ignored is valid for the pitch axis.
The variétion of the vehicle's inertia about this axis is zero since the
rotation of the solar panels is constrained to be about this axis. How-
ever, the variation of the spacecraft's inertia about the other two axes
due to solar panel motion can be significant, and since the pitch gravi-
ty gradient torque is dependent on these off axis inertias, the assump-

tion must be examined more closely. The total vehicle inertia is;
I=1I'+CJCT - Kr r > (115)

The time varying portion of this inertia is the CJCT term, which

expands to,

CJCT = | J,cos2(at) + Jgsin2(at) O (45 = J,)sin(at) cos (at)
0 J, 0 (116)
(J; - Jy)sin(at) 0 J,sinZ(t) + Jycos?(at)

The gravity gradient torque is a function of the I,» I, and I,

terms of the inertia matrix.
I, = I,' + J,cos2(at) + Jysin?(at) = I ' + J, + (J, - J)sin2 (0t (117)

I, =1"'+ J,cos2(Ot) + J.sin2(Ot) = I.' + J,  + (J. - J,)cos2(nt(118)
z z 1 3 2 1 3 1 v

I,=1."'+ (J; - J)sin(at)cos(nt) (119)
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The inertias are all dependent on the difference between the J; and
J, terms of the solar panel inertia. The closer these two values are,.

the less impact the solar panel motion has on the gravity gradient tor-

que.

Some predicted values for solar panel inertia are;

J, = 16545372.76 N-m2
Jy = 1292047.280 N-m?
I,' = 45559718.78 N-m2
I,' = 30679373.76 N-m?
I,,' = 5930594.86 N-m2

xZ

- dg =, = -.25

J, + I (120)

g = J, = -.32

Jy+ 1) (121)
and

dg=_J, - -2.57.32
I [}

xZ

(122)

The ratios show that the time varying components of the inertias are
significant in comparison to the inertia of the vehicle if the solar

'panels are considered as non-rotating.
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3.2 COMPLEX TORQUE MODELS

A more complete modeling of the torques on the space station would
take into account the inertia changes associated with the motion of the
solar panels and MRMS, the resulting changes in the moment arms of the
aerodynamic and radiation torques due to these mass shifts, and the tor-
ques due to the changing inertia of the space statién as it is being

held at a constant rate.

The motion of the solar paneils produces no net torque about the

vehicle y-axis, but it does cause the I, 1 and I, vehicle inertias

2
to be time varying, which affects the gravity gradient torque. Similar-
ly, motion of the MRMS along directions parallel to the pitch axis pro-
duces no pitch torque, but does contribute to the changes in the gravity
gradient torques. The motion of the MRMS parallel to the 2z-axis has the
most pronounced effect on the spacecraft. It produces a sizable torque
as well. as both changing the vehicles inertia and changing the pitch

moment arm of the aerodynamic torque by shifting the center of mass of

the entire vehicle parallel to the 2-axis.(Figure 15 on page 74)

The MRMS maneuvers are shown in Figure 16 on page 75.
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Figure 15. Shift of C.0.M. with MRMS motion
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Figure 16. MRMS maneuvers
3.2.1 _Complex Mode] Y-Motion of MRMS
The aerodynamic torque, for y-motion of the MRMS, is the same as for
the case of no motion of the MRMS, except that the moment arms of the

pitch torque are adjusted for whatever initial 2z position the MRMS has,

which in this case is +54.86 m.

My = =1/2 pv3Co (A r, + Agr ) (1 + 1/2 cos(nt)) cose (123)
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where;

.Asp = frontal area of the solar panels

= Asp|cos(nt)|. due to solar panel rotation

The aero torque can be expressed as a function of time and the pitch

angle.

M, = K,cose (1 + 1/2 cos (nt))

+ K,'coso (1 + 1/2 cos(nt)) { cos (nt) , for 0 =/2n

€t<
-cos(nt) , for =/2n < t S 3w/2(124)
cos(nt) , for 3n/2n < t S 2u/n

For simplicity, the parameters in the equation have been collected

into the constants K, and K,'

K, = =1/2 pv3CpA_r,

(125)
and
Ky' = =1/2 pv3CoAgryo (126)
The pitch gravity gradient torque is a function of the I, I,, and
I, vehicle inertias,
Mge = 3n2[(I,(t) - I (t))sinecose - I (t)] (127)
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To determine the torque, the inertia must be found as a function of

time, given the motion of the MRMS and the solar panels.
I =1+ CJCT - KrpXr® (128)

where;

K=M, (8 <+
My + Moo + M (129)

and

r = distance from core/solar panel center of mass to MRMS

J = solar panel inertia matrix = constant

C = transformation from solar panel to core coordinates

I' = core inertia matrix, plus the inertia due to the mass
offset from solar panels = constant

C=2C(t) and r; = r (t)

Again, the time varying portions of the inertia expression are;

CJCT = | J,cos?(nt) + Jysin?(nt) 0 (J5 = J)sin(nt) cos (nt)
0 J, 0
(J; = Jy)sin(nt)cos (nt) 0 Jysin? + Jscos? (nt)
(130)
and
KroXry* = K 1=(ry,2 + 1 2) e e (S
y Tx' Ty Tx' Tz
l'T)('»Ty -(rT22 + rsz) Fryl1z (131)
Frxl1z Fryl1z “r,S F P
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For the y-motion of the MRMS; r, =0
Fig = g0 ™ CONStant

rTy = rTyo + met

This gives the time varying inertia components;

1(t) = I' + Jcos2(nt) + Jgsin?(nt) + K(ry 2 + rp 2) (132)
I,(t) = I,' + Jysin?(nt) + Jycos?(nt) + K(ry 2 (133)
12 (1) =1 ," + (4 - J,)sin{nt)cos (nt) (134)

And the gravity gradient torque is;

Meo = (K= K, + Kjcos (2nt))sinecose - Ky - K,/2 sin(2nt) (135)

Again, for simplicity, the parameters have been coliected into the

constants K,, K,, K,, and Ky, where the constants are defined as fol-

lows;
K, = 3n2(1,' - I,') (136)
Ky = 3n2(J, - J,) (137)
K, = Sn: (Kry,02) (138)
Ky = 3n2(I,.0) (139)

Adding the aerodynamic torgue to the gravity gradient torque gives
the total torque on the space station.'for y-motion of the MRMS, as a
function of tiﬁe and pitch angle. Integrating that expression over time
yieldsA the disturbance momentum imparted to the spacecraft that will

have to be dealt with by the CMG's.
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H(o, t) = K,coso(t + 1/2n sin(nt))
+ K,'cost {(1/n sin(nt) + t/4 + 1/8n sin(2nt))
0<t < «/2n
(2/n + =w/4n - 1/n sin(nt) - t/4 - 1/8n sin(2nt))
w/2n S t £ 3n/2n
4/n - w/2n + 1/n sin(nt) + t/4 + 1/8n sin(2nt))
3n/2n £ t € 2%/n
+ ((Ky- Kt + K,/2n sin(2nt))sinecose - K,t + K,;/4n cos(2nt) - K,/4n

(140)
This expression can be seen to reduce to the simpler expression for
momentum that didn't take into account inertia changes from the internal

motions, by setting the K; and K, constants to zero.

Now that we have this expression for the disturbance momentum, the

questions that need to be answered are;
1. What is the ATEA (Average Torque Equilibrium Attitude) at which
to fly the space station to cancel this momentum over a given

time T?

2. What is the peak momentum expected for various attitudes?

3. What effects do uncertainties in the attitude and in the torque

models have upon this peak momentum prediction?
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The peak momentum is important as it will determine the sizing of
the momentum exchange devices that will be used to compensate for this
disturbance momentum.

The ATEA pitch angle can be found by employing its definition;

H(e,, T) ®0 , T = 2n/n = orbit period (141)

- Kycos0,(T) + K, 'cose, (4/n) + (K,~ K,)Tsine,cose, - K,T =0 (142)

Solving this transcendental equation for o, can be accomplished

iteratively by using this expression;
A = sin'[1/(K~ K,) ((Kg/cose,) - (K, + K,' 2/x))] (143)
The time t=T was chosen because it simplifies the equation for 6,

however any time could have been used, while muitiples of T also give a

simpler expression.

3.2.2 Complex Model Z-Motion of MRMS

For motion of the MRMS parallel to the 2-axis, different expressions

for the torque and momentum must be obtained. The variations of the
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moment arms of the aerodynamic torque with a shifting center of mass,
and the torque due to a changing Iy must be included along with the var-

iation due to changing I, I,, and I, inertias.

The aerodynamic torque for 2z-motion of the MRMS is;

M, = (K, - K;'thcoso (1 + 1/2 cos (nt))
+ (K, - K,'t)coso (1 + 1/2 cos (nt)) cos (nt)
for 0 <t st
(K, - K,'t,)cose (1 + 1/2 cos (nt))
+ (K, - K,'t))cose (1 + 1/2 cos(nt)) ( cos(nt) ,for t, S t < =/2n
-cos (nt) ,for w/2n € t S 3w/2n
cos (nt) ,for 3n/2n € t < 2n/n
for t, S t S 2n/n (144)
Where;
Ky = =1/2 p v2CALr e, (145)
Ky' = =172 pov3CoAc (My/M +M ) vy, (146)
Ky = =1/2 pV3CpAg T gno (147)
Ky' = =1/2 poviCoAy, (My/M M ) v, (148)

and t, = time -the MRMS motion stops

The gravity gradient torque for MRMS z-motion becomes;
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Moo = [(Ky~ Kgt = Kgt? + K.cos(2nt))sinécose - K, - K/2 sin(2nt)

for 0 £t < t,

(Kg= Kut, - Kgt,? + Kccos(2nt))sinbcose - K, - K/2 sin(2nt)

for t, < t £ 2n/n (149)

Where;
Ky = 3n2(I,' - I,' = Krqpn2) (150)
Ke = 3n?(2Kry,0vy,,) (151)
Kg = 3n2 (Kv,,,2) (152)
Ke = 3n2(Jy - J) . | (183)
Ky = 3n2(1,,") (154)

The torque from the changing Iy due to the MRMS motion is;

Murus = 2MulpzVaen = 2Myn(r

+ vy, 2t) , (155)

llIZOva

(for z-motion of MRMS)

Integrating the sum of these three torques yields the expression for

the disturbance momentum for the z-motion of the MRMS;

82



H(e, t) = K,coso(t + 1/2n sin(nt))
+ Kycos6 (1/n sin(nt) + t/4 + 1/8n sin(2nt))
+ K,'cose (t2/2 + 1/2n? cos(nt) + t/2n sin(nt) - 1/2n?)

+ K,'cos6 (t/n sin(nt) + 1/n? cos(nt) + t/8n sin(2nt)
+ 1/16n%cos (2nt) + t2/8 - 17/16n2)

+

(Kyt = K, t2/2 = Kgt3/3 + K /2n sin(2nt))sinecose
- K.t 4 K6/4n cos (2nt) - K./4n

+

2M,n (r t + v,,2/2 t?)

IZO nz

for 0 s t st

(K, - K,"t,)cos6(t + 1/2n sin(nt))

+Q,

+ ((Kg = Kty = Kgt,2)t + Ko/2n sin(2nt)) sinecose
Kot ° Kg/4n cos(Znt)(K4t1 /2 + 2/3 Kgt,3) sinocose - K./4n

+ 2M,n (r t, + v,,2/2 t2)

nzo nz

+

(K, - K,"t,)cose{{1/n sin(nt) + t/4+ 1/8n sin(2nt))
for t, s ts w/2n
(2/n + n/4n - 1/n sin(nt) - t/4 - 1/8n sin(2nt))
for n/2n S t € 3n/2n
(4/n - =/2n + 1/n sin(nt) + t/4 + 1/8n sin{(2nt))
for 3n/2n S t S 2n/n
for t, < t S 2a/n (156)
where
Q, = K,'cose (t,2/2 - 1/2n? cos(nt,) - 1/2n?) (157)

+ K,'cosb (t,2/8 - 1/n? cos(nt,) - 1/16n? cos(2nt,) + 17/16n2)

And lastly, the ATEA angle for this maneuver can be found by an

iterative solution of an equation of the form;
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= Ky = Kt )T

= (k, - Kz't1)4/n

Q,/cose,

-K,T + 2M,n(r

mz OVI'IIZ

sin"[1/C4(C5/cos0A - (€, +C,+Cy))]

(Ky - Kety - Kgt, AT + (K,t,2/2 + 2/3 Kst,3)

2 2
ty + vy, 22 1)

(158)

(159)
(160)
(161)
(162)
(163)



In this section, the torques and momentum response from the simple
model with solar panel rotation are presented in Figure 17 on page 86 to

Figure 24 on page 93 .

The torques and momentum response from the complex model with no

. motion of the MRMS are presented in Figure 25 on page 94 to Figure 33 on

page 102 .

The torques and momentum response from the complex model with Y-mo-
tion of the MRMS are presented in Figure 34 on page 103 to Figure 42 on

page 111 .,

And the torques and momentum response from the complex model with
Z-motion of the MRMS are presented in Figure 43 on page 112 to Figure 51

on page 120.
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Figure 17. Momentum, Simple Model, ATEA hold
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NMS ~\\\\;
MAX 0.0 :

MIN -12us03. : \\

-13

Figure 18. Momentum, Simple Model, LVLH hold
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Figure 19,

Momentum, Simple Model, ATEA - 1 deg hold
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Figure 20. Momentum, Simple Model, ATEA + 1 deg hold
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Figure 24. Momentum, Simple Model, ATEA hold, p + .503 )
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PITCH MOM SM
NMS

MAX 0.0
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Figure 22,

Momentum, Simple Model, ATEA hold, p - 50%
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Figure 23. Torque, Simple Model, ATEA hold
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ORIGINAL PAGE I8
OF POOR QUALITY,
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Figure 24. Torque, Simple Model, LVLH hold
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Figure 25, Momentum, No Motion MRMS, LVLH hold
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OF POOR QUALITY.
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Figure 26. Momentum, No Motion MRMS, ATEA hold
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Figure 27.

Momentum, No Motion MRMS, Min. Peak Momentum Attitude
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Figure 28. Momentum, No Motion MRMS, ATEA - 1 deg hoid
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Figure 29.

Momentum, No Motion MRMS, ATEA + 1 deg hold
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Figure 30. Momentum, No Motion MRMS, ATEA hold, p + 50%
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Figure 31. Momentum, No Motion MRMS, ATEA hold, p - 50%
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Figure 32. Torque, No Motion MRMS, LVLH hold
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Figure 33.

Torque, No Motion MRMS, ATEA hold
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Figure 34. Momentum, Y-Motion MRMS, LVLH hold
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Figure 35. Momentum, Y-Motion MRMS, ATEA hold
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Figure 36.
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Momentum, Y-Motion MRMS, Min. Peak Momentum Attitude
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Figure 37. Momentum, Y-Motion MRMS, ATEA - 1 deg hold
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Figure 38. Momentum, Y-Motion MRMS, ATEA + 1 deg hold
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Figure 39. Momentum, Y-Motion MRMS, ATEA hold, p + 50%
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Figure 40.

Momentum, Y-Motion MRMS, ATEA hold, p - 50%
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Fi_gure' 41. Torque, Y-Motion MRMS, LVLH hold
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Figure 42. Torque, Y-Motion MRMS, ATEA hold
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Figure 43. Momentum, Z-Motion MRMS, LVLH hold
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Figure 44. ' Momentum, Z-Motion MRMS, ATEA hold
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Figure 45. Momentum, Z-Motion MRMS, Min. Peak Momentum Attitude
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Figure 46. Momentum, Z-Motion MRMS, ATEA - 1 deg hold
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Figure 47. Momentum, Z-Motion MRMS, ATEA + 1 deg hold
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Figure 48. Momentum, Z-Motion MRMS, ATEA hold, p + 50%
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Figure 49. Momentum, Z-Motion MRMS, ATEA hold, p - 50%
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Figure 50.

Torque, Z-Motion MRMS, LVLH hold
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Figure 51. Torque, Z-Motion MRMS, ATEA hold
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5.1 ATTITUDE AND PEAK MOMENTUM

The peak disturbance momentum varies significantly with the attitude
at which the space station is held.(Table 4 on page 123) For all the
models, and all possible motions of the MRMS, it can be seen that it is
significantly better to hold the spacecraft fixed at the ATEA angle than
to hold the vehicle axes alfgned with the LVLH frame. The factor of
four reduction observed for the simple model in [5] is now a factor of
-fifty reduction in the peak disturbance momentum due to the more aero-
dynamically balanced design of the dual keel space station design when

compared to the previous power tower design.

Comparing the peak momentum observed with the simple model and that
observed with the complex model with no MRMS motion shows the importance
of including the effects of the motion of the solar panels on the iner-
tia of the space station in the analysis. This leads to an increase in

the expected peak momentum on the order of a factor of fifty,
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The better performance at the ATEA attitude can also be attributed
to the fact that the vehicle axes of the dual keel design are not the
principal axes of the space station. A larg; x2 product of inertia
exists when the vehicle axes are aligned with the LVLH frame which pro-

duces a large pitch gravity gradient torque.

The most important result of examining the effect of attitude on the
peak disturbance momentum is the discovery that, except for the simple
torque model, the ATEA attitude does not produce the minimum peak dis-

turbance momentum on the space station. The ATEA angle is close to the

attitude which produces the minimum peak momentum (Table 5 on page 124),
but the actual angle that produces the minimum peak momentum is less
than the ATEA angle by up to one degree. The reason for this is that
while the ATEA attitude guarantees that the disturbance momentum will be
zero at the end of the time interval T, it does not guarantee that the
median disturbance momentum will be zero during that interval. The
angle which makes thg median disturbance momentum 2ero is that which

produces the minimum peak momentum.

Fixing the space station's attitude at the angle which minimizes the
peak disturbance momentum does not necessarily give zero momentum at the
end of the time interval. Whatever momentum is left must be dealt with
on the next time interval, so this minimum peak momentum attitude may

not be the best attitude. And as can be seen is Table 4 on page 123,
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the reduction in peak momentum from the ATEA hold case is only 10-20%
for all the models.

Table 4. Peak Momentum vs. Attitude Specification

CASE Peak Momentum{% Difference
(N-m-s) From Nominal
Simple model, ATEA hold 44,1827
Simple model, LVLH hold -124503.0 +281627.53%
No MRMS motion, ATEA hold 2370.39
No MRMS motion, Minimum Peak 2010.40 -15.2%
Momentum Attitude
No MRMS motion, LVLH hold -124503.0 +5152.43%
Y motion MRMS, ATEA hold 2467.73
Y motion MRMS, Minimum Peak 2040.70 -17.3%
Momentum Attitude
Y motion MRMS, LVLH hold -121480.0 +4822.74%
Z motion MRMS, ATEA hold 20445.0
Z motion MRMS, Minimum Peak 18430.0 -10.3%

Momentum Attitude

Z motion MRMS, LVLH hold -105469.0 +415.87%
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Table 5.

Attitude Pitch Angle
Simpie Model ATEA hold -23.57820760 deg
No MRMS motion ATEA -26.27417614 deg
No MRMS motion min.
peak momentum attitude -25.73385 deg
Y-motion MRMS ATEA -7.64112094 deg
Y-motion MRMS min.
peak momentum attitude -7.51450 deg
Z-motion MRMS ATEA -6.28786112 deg

Z-motion MRMS min.
peak momentum attitude -5.18090 deg

5.2 MRMS MANEUVER AND PEAK MOMENTUM

The motion of the MRMS increases the peak disturbance momentum in
general. Motion parallel to the y-axis of the space station produces a
slight increase in the peak momentum, while motion parallel to the
2-axis and for the full length of the space station increases the peak

momentum by an order of magnitude. (Table 6 on page 126)

It also can be seen that, for 2 motion of the MRMS, the peak momen-
tum is dependent on the speed at which the MRMS moves. Faster speeds

decrease the peak momentum slightly. Taking advantage of this has its
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limits in that the MRMS will have some maximum speed at which it can
move. Also, the analysis of the momentum buildup shown here does not
take into account the starting and stopping torques of the MRMS, which

become more significant as its operating speed is increased.

Also, if the MRMS 2 motion is less than the entire length of the
vehicle, then the peak disturbance momentum resulting from the motion is
greatly reduced. If the distance traveled is only 20 meters instead of
90 meters, the peak momentum can be reduced by a factor of 10, as seen

in Table 6 on page 126.

Because the motion of the MRMS parallel to the 2z axis produces such
2 large peak momentum, it might be more efficient to treat it as an iso-
lated disturbance and deal with it individually, rather than include it

in any prediction scheme where an optimal attitude is being chosen.
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Table 6. Peak Momentum vs. MRMS Maneuver

CASE Peak Momentum|% Difference
(N-m-s) From Nominal
No MRMS motion, ATEA hold 2370.39
Y motion MRMS, ATEA hold 2467.73 +4.1% (over
no motion)
Z motion MRMS, ATEA hold 20445.0 +762.5% (over
no motion)
Z motion, Faster, Vm=.5 m/s 18791.2 -8.08%
Z motion, Slower, Vm=.125 m/s 23664.7 +15.75%
Z motion, Shorter distance 2913.45 -85.75%
Z motion, Shorter, Slower 2939.27 -85.62%
Z motion, Stop at C.0.M. -12728.5 -37.74%

5.3 ATTITUDE UNCERTAINTY AND PEAK MOMENTUM

Another question that must be answered after the most desirable
attitude is determined is how closely can this attitude be followed. A
reasonable estimate of the accuracy of the control of the space station

is that it will be able to hold an attitude to within +1 deg or -1 deg
error. The resulting effect on the peak momentum of being that far off

from the ATEA angle is shown in Table 7 on page 128.
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It can be seen that the attitude uncertainty has a substantial
effect on the peak momentum in the no MRMS motion case, and a very large
effect on the peak momentum in the Y motion case, but the Z motion case

is relatively insensitive to errors in attitude.

The effect on the Y motion peak momentum of an error in attitude is
important because with a relatively small error the peak momentum value
is raised to nearly that of the Z motion case. This is probably due to
the large aerodynamic moment arm that is'produced when the MRMS is sta-

tioned at the lower keel, as it is in the y axis manuever.
There is no longer an advantage of a lower peak momentum when deal-

ing with the y axis maneuver versus the 2z axis maneuver due to this

error in the attitude.
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Table 7.

Peak Momentum vs. Uncertainty in Attitude

Peak Momentum

CASE % Difference
(N-m-s) From Nominal
No MRMS motion, ATEA hold 2370.39
(pitch angle = -26.274176 deg)
No MRMS motion, ATEA + 1 deg -3524.19 +48.68%
No MRMS motion, ATEA - 1 deg 4605.99 +94.31%
Y motion MRMS, ATEA hold 2467.73
(pitch angle = -7.6411209 deg)
Y motion MRMS, ATEA + 1 deg -15586.6 +531.62%
Y motion MRMS, ATEA - 1 deg 15437.4 +525.57%
Z motion MRMS, ATEA hold 20445.0
(pitch angle = -6.2878611 deg)
Z motion MRMS, ATEA + 1 deg 18544 .1 -9.3%
Z motion MRMS, ATEA - 1 deg 23244.7 +13.69%

torque and momentum contribution.

the space station by another.

on page 130, and Table 10 on page 131

128

The effect of errors

5.4 AERODYNAMIC MODEL UNCERTAINTY AND PEAK MOMENTUM

As already noted,

The real uncertainty in all of these momentum models is the aerodynamic
the atmospheric

density and the vehicle drag coefficient are unpredictable in the short
"~ term due to effects such as solar activity and shadowing of one part of
in different aero-

dynamic parameters in the model is shown in Table 8 on page 129, Table 9




Variations from the predicted values of the aerodynamic parameters
have littie effect on the no motion MRMS and z motion MRMS peak disturb-
ance momentum values. The effect on the y motion case is greater, with
a 50% variation in the atmospheric density producing a 25% increase in
the peak momentum value. In general, the contribution to the peak
momeﬁtum is small so variations in the aerodynamic model have little
effect. The y motion case is affected the most because for that case
the moment arms of the core and solar panels are the largest.

Table 8. Peak Momentum vs. Uncertainty in Aerodynamic Parameters

CASE Peak Momentum!|X Difference
No MRMS Motion (N-m-s) From Nominal

Actual density = pred. density| 2370.39
(Pred. density = 1.5X10E~12)

Act. den. = Pred. den. - 50% 2309.69 -2.56%
Act. den. = Pred. den. + 50% 2461.39 +3.84%
Act. drag = Pred. drag - 20% 2345.93 -1.03%
(Pred. drag coefficient = 2.7)

Act. drag = Pred. drag + 20% 2394.84 +1.03%
Act. SParea=Pred. SParea - 25%| 2393.43 +.97%

(Pred. S.P. area = 1974.64)

Act. SParea=Pred. SParea + 25%| 2347.35 -.97%

Act. Carea = Pred. Carea - 25%| 2316.92 -2.26%

(Pred. CORE area = 261.17)

Act. Carea = Pred. Carea + 25%| 2427.72 -2.42%
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Table 9.

Peak Momentum vs. Uncertainty in Aerodynamic Parameters

CASE Peak Momentum|% Difference

Y Motion MRMS (N-m-s) From Nominal
Actual density = Pred. density 2467.73
(Pred. density = 1.5X10E~12)
Act. den. = Pred. den. - 50% 1889.96 -23.41%
Act. den. = Pred. den. + 50% 3051.58 +23.66%
Act. drag = Pred. drag - 20% 2235.77 -9.40%
(Pred. drag coefficient = 2.7)
Act. drag = Pred. drag + 20% 2700.62 +9.44%
Act. SParea=Pred. SParea - 25%( 2280.85 -7.57%
(Pred. S.P. area = 1974.64)
Act. SParea=Pred. SParea + 25%| 2654.83 +7.58%
Act. Carea = Pred. Carea - 25%| 2364.57 -4.18%
(Pred. CORE area = 261.17)
Act. Carea = Pred. Carea + 25%{ 2571.59 +4.21%
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Table 10. Peak Momentum vs. Uncertainty in Aerodynamic Parameters

CASE Peak Momentum|% Difference
Z Motion MRMS {N-m-s) from Nominal

Actual density = Pred. density 20445.0
(Pred. density = 1.5X10E-12)

Act. den. = Pred. den. - 50% 20223.7 -1.08%
Act. den. = Pred. den. + 50% 20666 .4 +1.08%
Act. drag = Pred. drag - 20% 20356.5 -.43%
(Pred. drag coefficient = 2.7)

Act. drag = Pred. drag + 20% 20533.6 +.43%
Act. SParea=Pred. SParea - 25%| 20441.7 -.02%
(Pred. S.P. area = 1974.64)

Act. SParea=Pred. SParea + 25%| 20448.3 +.02%
Act. Carea = Pred. Carea - 25%| 20337.6 -.53%

(Pred. CORE area = 261.17)

Act. Carea = Pred. Carea + 25%| 20552.4 +.53%

5.5 MASS PROPERTIES UNCERTAINTIES AND PEAK MOMENTUM

In Table 11 on page 133, Table 12 on page 134 , and Table 13 on page
135 the effects of uncertainties in the values of the masses and iner-
tias of the space station upon the peak value of the disturbance momen-
tum are shown. In each case the spacecraft was held in the ATEA

attitude.
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It can be seen that the I motion case is relatively insensitive to
changes in either the inertia components or the masses of the different
elements. None of the cases responds with a significant change in peak
momentum to a change in the core or solar panel mass, but both the no
motion and y motion case peak momentum values are increased significant-
ly by an 10% uncertainty in the inertia components of the core and solar

panels.

Another interesting effect that can be seen in the graphs of the

momentum response of the space station to errors in the inertia values

of the models, is that the ATEA angle is not affected by changes in the
inertia values of the solar panels. This is because their cyclic motion
produces a net zero momentum and so doesn't require any compensation for

in the ATEA.
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Table 11.

Peak Momentum vs. Uncertainty in Mass and Inertia

CASE Peak Momentum|% Difference

No MRMS Motion (N-m-s) From Nominal
Actual Mass SP = Pred. Mass SP 2370.39
(Pred. Mass SP = 5510.1999 kg)
Act.MassSP = Pred.MassSP - 10%| 2365.51 -.21%
Act.MassSP = Pred.MassSp + 10%| 2375.24 +.20%
Act. MassC = Pred. MassC - 10%| 2375.78 +,23%
(Pred. Mass Core=167869.2 kg)
Act. MassC = Pred. MassC + 10%] 2365.95 -.19%
Act. IZP = Pred. IZP - 10% 25681 .3 +083.42%
(Pred. IZP = 30679373.76kg-m2)
Act. IZP = Pred. IZP + 5% -12840.7 +441.71%
Act. IZP = Pred. IZP + 10% -25578.3 +979.08%
Act. IXP = Pred. IXP - 5% -19068.7 +804.45%
(Pred. IXP = 45559718.78kg-m2)
Act. IXP = Pred. IXP + 10% 38137.4 +1508.91%
Act. IXZP = Pred. IXZP - 10% 12506.9 +427.63%
(Pred. IXZP = 5930594.86kg-m2)
Act, IXZP = Pred. IXZP + 10% 12507.0 +427 .63%
Act. J1 = Pred. J1 - 10% -855.16 -63.92%
(Pred. Ji = 16545372.76 kg-m2)
Act. Ji = Pred. J1 + 10% 5531.05 +133.34%
Act. J3 = Pred. J3 - 10% 5296.18 +123.43%
(Pred. J1 = 15315869.66 kg-m2)
Act. J3 = Pred. J3 + 10% -620.27 -73.83%
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Table 12. Peak Momentum vs. Uncertainty in Mass and Inertia

CASE Peak Momentum|% Difference

Y Motion MRMS (N-m-s)’ From Nominal
Actual Mass M = Pred. Mass M 2467 .73
(Pred. Mass MRMS = 10000 kg)
Act.Mass M = Pred.Mass M - 10%| -7904.86 +220.33%
Act.Mass M = Pred.Mass M + 10%| 7819.11 +216.85%
Act.MassSP = Pred.MassSP - 10%| 2473.18 +.22%
(Pred. Mass SP = 5510.1999 kg)
Act.MassSP = Pred.MassSP + 10%| 2462.31 -.22%
Act. MassC = Pred. MassC - 10%| 2460.52 -.29%
(Pred. Mass Core=167869.2 kg)
Act. MassC = Pred. MassC + 10%| 2365.95 +.27%
Act. IZP = Pred. IZP - 10% 8526.52 - +245.52%
(Pred. IZP = 30679373.76kg-m2) :

. Act. IZP = Pred. IZP + 10% -8526.53 +245.52%
Act. IXP = Pred. IXP - 10% -12662.1 +413.11%
(Pred. IXP = 45559718.78kg-m2) '

Act. IXP = Pred. IXP + 10% 12662.1 +413.11%
Act. IXZP = Pred. IXZP - 10% 12506.9 +406.82%
(Pred. IXZP = 5930594.86kg-m2)

Act. IXZP = Pred. IXZP + 10% 12507.0 +406.82%
Act. Ji = Pred. J1 - 10% -1042.87 -57.74%
(Pred. J1 = 16545372.76 kg-m2)

Act. J1 = Pred. J1 + 10% 5288.25 +114.30%
Act. J3 = Pred. J3 - 10% 5078.50 +105.80%

(Pred. J1 = 15315869.66 kg-m2)

Act. J3 = Pred. J3 + 10% -844.10 -65.79%
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Table 13. Peak Momentum vs. Uncertainty in Mass and Inertia

CASE Peak Momentum|% Difference

Z Motion MRMS (N-m-s) From Nominal
Actual Mass M = Pred. Mass M 20445.0
(Pred. Mass MRMS = 10000 kg)
Act.Mass M = Pred.Mass M - 10%| 18047.0 -11.73%
Act.Mass M = Pred.Mass M + 10%| 22845.2 +11.74%
Act.MassSP = Pred.MassSP - 10%| 20468.5 +.11%
(Pred. Mass SP = 5510.1999 kg)
Act.MassSP = Pred.MassSP + 10%| 20421.7 -.11%
Act. MassC = Pred. MassC - 10%| 20211.5 -1.14%
(Pred. Mass Core=167869.2 kg)
Act. MassC = Pred. MassC + 10%| 20640.5 +.96%
Act. IZP = Pred. IZP - 10% - 20988.7 +2.66%
(Pred. IZP = 30679373.76kg-m2)
Act. IZP = Pred. IZP + 10% 19966.1 -2.34%
Act. IXP = Pred. IXP - 10% 19733.7 -3.48%
(Pred. IXP = 45559718.78kg-m2)
Act. IXP = Pred. IXP + 10% 21496 .4 +5.14%
Act. IXZP = Pred. IXZP - 10% 21844.1 +6.84%
(Pred. IXZP = 5930594 .86kg-m2)
Act. IXZP = Pred. IXZP + 10% 19584.5 -4.16%
Act. J1 = Pred. Ji - 10% 19740.2 -3.45%
(Pred. J1 = 16545372.76 kg-m2)
Act. J1 = Pred. J1 + 10% 22104.4 +8.12%
Act. J3 = Pred. J3 - 10% 21924.6 +7.24%

(Pred. J1 = 156315869.66 kg-m2)

Act. J3 = Pred. J3 + 10% 18792.6 -3.19%
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5.6 CONCLUSION

In all these cases, the Z motion of the MRMS has produced the larg-
est values of peak momentum for ATEA hold. If the effect of the MRMS
motion is to be included in the predictfve momentum management scheme,
then the values of peak momentum for the Z motion case will be the val-
ues used to size the momentum exchange devices necessary to compensate
for the disturbances. It can be seen that the values of peak momentum
for the Z motion of the MRMS are reiatively insensitive to errors in the
models or measurements that went into predicting what attityde is best
for decreasing the peak momentum value. Because of this insensitivity
it appears that the predictive scheme will work even with the inaccura-
cies in the models and uncertainties in the measurements. But this is
at the cost of accepting the highest expected moﬁentum values, and
being required to carry momentum exchange devices sized accordingly. If
MRMS motion were compensated for independent of the predictive momentum
management system, then the peak momentum value could be reduced by a
factor of five, to that of the expected peak disturbance momentum for

the no MRMS motion case with a 1 deg attitude uncertainty.

Also, the results show that the goal of minimizing peak momentum is

"not necessarily the best goal since it leaves a large disturbance momen-

tum at the end of the predicting time intervail. And while the ATEA
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angle doesn't produce the minimum peak disturbance momentum, it does
come relatively close, as well as leaving zero disturbance momentum at

the end time.

5.7 RECOMMENDATIONS FOR FUTURE WORK

The minimum peak momentum attitude must be defined explicitly and a
compromise between the ATEA attitude and the minimum peak momentum atti-

tude be found.

Also the effect of expanding the time scale of the prediction of
torques should be examined. How does it affect the uncertainty in the
environment and how does it affect the peak momentum and ATEA calcu-

lation?
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The model of the space station from which the models in the momentum
analysis were derived ‘is one which consisﬁs of three interconnected
rigid bodies. These bodies are the core of the space station (habita-
bility, logistics and laboratory modules as well as the supporting truss
structure), the rotating solar panels, and the mobile remote manipu-
lation system (MRMS). As well as beiﬁg rigid, each component in the
composite structure is assumed to have a constant inertia and mass, in
its own frame. The MRMS is assumed to be a point mass so its inertia is

negligible.

This model was chosen because it will allow the for tﬁe examination
of the effects of two important internal disturbance torques on the
attitude motion of the space station; the friction torque between the
rotating solar panels and the core, and the inertia change torques due
to the motion of the MRMS, as well as the effects of external torques

such as the gravity gradient and aerodynamic torques.

To start the derivation of the equations of motion of the three-body
space station, first define the angular momentum of the composite space-

craft, which is the momentum of each component about its own center of
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mass, plus the moment of the 1inear momentum of each component about the
composite center of mass. Bodies 1, 2, and 3, are the core, solar pan-

els, and MRMS, respectively;

H, = A[I,w +1, (wt)) + I

+m,(r, X dr /dt) + m,(r, X dr,/dt) + m,(r; X dr,/dt) (164)

where r,, r,, and r, are the vector positions of the three bodies with

respect to the vehicle center of mass, in an inertial frame.

Since the solar panel center of mass remains fixed with respect to
the center of mass of the core, these two bodies can be combined into

one, with the core/solar panels now being body 1 and the MRMS now being

body 2;

H, = A[(I + CJCT)w + CJOQ + m,r X (w*r, + dr /dt)

+ myr,* (w*r, + dr,/dt)] (165)

140



CORE, I
c

BODY 1 I = - XX _ x X
Ic BeTele msp sprsp
. Il- Inertia of body 1 = T + CJCT
SOLAR PANELS, J
Figure 52. The definition of I and "two' bodies
where;
I = inertia of.the core structure about its owm c.o.m.,
plus the inertia due to the mass offset of the core and solar
panels from their combined center of mass
J = ipertia of the solar arrays about their own c.o.m and in-their
own frame
w = angular velocity of the entire space station, in the body frame
Q0 = angular velocity of the solar arrays with respect to the core
expressed in the solar panel frame,
C = transformation matrix from solar panel frame to the core frame
A = transformation matrix from core frame to the inertial frame
m, = mass of core and solar paneis combined
m, = mass of the MRMS :
r, = vector from total space station c.o.m. to the c.o.m. of the
core and solar panels combined
r, = vector from total space station c.o.m. to the MRMS

(and r,, r, are now in the body frame)
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The notation ( )* refers to the skew symmetric matrix that is con-
structed from a column matrix. When multiplied by another vector The
skew symmetric matrix gives the matrix equivalent of a vector cross pro-

duct.

Since the centers of mass of the MRMS, core/solar panels, and the
total vehicle remain colinear, the whole system can be represented by

one vector from the core/solar panel center of mass to the MRMS.

<

BODY 2, MRS —> @< . < ~ 7/% BODY 1, CORE/SOLAR

PANELS

C. 0. M.
TOTAL VEHICLE

Figure 53. The definition of r; in terms of r, and r,

ry = mr ro = mr
(m,+m,) (m +m,) (166)
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Using these definitions for r, and r,» the momentum equation

becomes,

Hg = [(I + CJCT = Kry*ri)w + CJO + Kry¥dr /dt] (167)

where

ry = vector from the c.o.m. of the combined core and solar panels
to the MRMS

K =mm/(m, + m,) ('reduced mass' of system)

Differentiating the angular momentum with respect to time in the

core frame yields an expression for the torque on the vehicle in the

core frame.
M= I'do/dt + *I"w + *CJQ + C(QJ - JO¥)CTw + CJdO/dt (168)

+ K(w*ry*dry/dt + ro*e*dr,/dt

+ dri/dtXe®r, + ro%d?r./dt?)

where;

I" & I 4 CJCT - Kro¥r X (inertia of total! vehicle)

In differentiating this equations, the following matrix identities

were used:;
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dA/dt = o*A (169)

dC/dt = Q*C (170)

In order to solve this equations for the angular velocity of the
space station, expressions are needed for the time rate of change of the
solar panel rate, dd/dt, and the time rate of change of the MRMS veloci-
ty, d?r;/dt?. These expressions are obtained by writing the equations
of motion of the solar panels and the MRMS separately. The egquations of

motion for the solar panels alone are;

H, = ACJ (2 + CTw) , (171)
M. = dH /dt (172)
My = 0*CJQ + 0*CJCTw + CJdO/dt + CICTdw/dt + (0 - JOX)CTo (173)

5 do/dt = J°'CT [N, - W*CIR- C Q%= JO¥) CTo- *CICTw- CJCTdw/dt] (174)
where M. is the disturbance torque plus the frictional torque exerted on

the solar panels at the hinge between the solar panels and the core of

the space station. The equations of motion for the MRMS alone are;

s; = Ar, (175)
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ds;/dt = Aw*r, + Adr./dt (176)
d2s;/dt? = Aw™wr,+ A(dw/dt)*r; + 2Aw*dr,/dt + Ad2r./dt? = F_ (177)

where Fo = MRMS inertial acceleration

and s, = MRMS inertial position vector

Fo ® dvi/dt + 20%v; + (dw/dt)*r; + o®e™ry (178)

where F_ is the acceleration of the MRMS in the body frame.
L dr /dt? = dv,/dt = F - 2u™dri/dt- (dw/dt)*r; - o*o*r, (179)

The three derived equations of motion, for the MRMS, solar panels
and for the total vehicle, all assume that there are no constraints on
the relative motion between the components of the space station. In

fact, the motions of the MRMS and the solar panels are very constrained.

The solar panels can rotate only about the Y axis of the vehicle, and so

must have 2ero position, rate and acceleration about the other two axes.

The MRMS is constrained by the essentially planar configuration of
the dual keel space station to move along a direction that is parallel
to the either the y or z axis of the space station. The position and

velocity of the MRMS for a given portion of this motion are effectively
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scalars. The rate and angle of the solar panel displacement are also
scalars because the rotation of the solar panels is always about the Y

axis of the space station.

'—1.

Motion of MRMS alone trusses in Y-Z plane only

Figure 54. Constraints on MRMS motion

If the system state vector is.defined to be a combination of the
angular rate of the entire space st;tion, w, the state of the solar pan-
els; 0, 6, and the state of the MRMS; r,, v,, then a coupled set of
state equations can be derived by solvfng the previous three sets of
equations of motion, eqn's (168) (174) (179) , for the rate of change of
the state. The equations of motion of the MRMS and solar panels with

the constraints on their motion added are needed.

For motion of the MRMS paralle! to the vehicle Y-axis, the equations

of motion for the MRMS become;
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d?r./dt? = 0
(Fo)y, = (20™dr./dt) - ((dw/dt)*r;) = (0% 0*ry)
m’y T Oy Ty Ty (180)

And for motion of the MRMS parallel to the vehicle Z-axis, the

equations of motion become;

d?r,/dt? = ]
0
(Fm)z - (2w"dr.,./dt)z- ((dw/dt) er)z - (wxuer)z (181)

For the rotation of the solar panels about the Y axis of the vehicle

alone, the equations of motion become;

da/dt = J-'c’ 0

(Me) - (w*Cd) = (C(@J=- J0)CTw) - (wCJCTw) - (CJCTdw/dl),

0 (182)

The notation ()y and (), refers to the y and z component of the col-
umn matrix that results from each expression, respectively. By substi-
tuting these equations for the motion of the solar panels and the MRMS
into the equations of motion for the entire space station, (168) the
equations of motion for the core of the vehicle, including the con-
straints on the MRMS and solar panel motion can be derived. There are
two sets of these equations, one for motion of the MRMS parallel to the

Z-axis and one for motion parallel to the Y-axis. They are, respective-

ly;
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(Y-motion of MRMS)

M= |I'de/dt), + (*I"0), + (o*CJO), + (C(J - JO¥)CTw),
(I'dw/dt)  + (o*I"w) + («.,"c.m)y + (C(d - J09) ch)y
(I"dw/dt) , + (*I"e), + (W*CJQ), + (C(J - JON)CTw), (183)

+ 0

(M), = (w*Cdn), - (C@J- 40 CTw), - (*CJCTw), - (CICTdw/dt)
0

+ K| (o*ri*dr,/dt) |+ K (ry*w*dr,/dt) |+ K (dry/dt™e "rT)

(wr "drT/dt)y (l'.r"c»"drT/dt)y (dri/dt*w*ry)
(w* rT"drT/dt) (ry*w*dr./dt), (dr.r/dt © rT)
+ Kr.X 0 ]

(o), = Qurdre/an), - (@o/dt)r) - ('ry),

{(Z-motion of MRMS)

M =] (I"dw/dt), + (w*I"e), + (*CJ), + (C(J - JO¥)CTw),

(I"dm/dt) + (w"I"m)y + (w"CJﬂ)

(I'do/dt) ) + (W*I")) + (0*CJQ))

+ 0

+ (C(™y - 409 CTw)
+ (C(o*J - J09) ch) (184)

M) = wXCd0) - (C(@*d- 40 CTw) = (*CJCTw) - (CICTdw/dt),
0

+ Kl {o*rydro/dt) |+ K (ri%0*dro/dt) |+ K [{dry/dtXe®r,),

(w*r *dr 1/dt)
(w* rT"dr.,./dt)

<

+ Kr X 0
0

(|".,."m"dr1./dt)y (dr /dt*e*r )
(l".r"(»"dr.,,/dt.)z (dr /dt*aw I’T)

(Fn) z "~ (20xdl’7/dt) 2 - ((dw/dt) "I’T) 2" (w"w"r.r) 2

These equations can now be solved for dw/dt,

'inertia' matrix, I''', and a new ‘moment' vector, M'.
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(I”" - Krzz) (112u + Kr2r1) 113 dw1/dt H1'
(I, + Kryrp) (Ip," = Jp - Kr?) I, du,/dt | = | M,
3 I,," I,," dw,/dt N, (185)

W
I''' (Z motion of MRMS)

where 1,2,3 = x,y,2

(I, = Krg2)  I.,"  (I.," + Krgry)| | de,/dt M,
" H

I, (12" - J5) Ig" | [de/dt = | M,
(I,5" + Kryry) L% (I - Kr2)| | de,/dt M, (186)
— —— —

I''' (Y motion of MRMS)
The state equations for Y motion of the MRMS are;
do/dt = I'''M'
do/dt = JUCT[(M) = (@CJ) - (C(J - 0 CTw) - (0*CJCTw) - (CICTdw/dE) ]
| de/dt = O : (187)
dVT/dt = [(Fm)y - (wadl"T/dt)y - ((dw/dt) er)y - (wxwxl’T) y]

dr./dt = v,

The state equations for Z motion of the MRMS are;
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do/dt = I'''M'

da/dt = J7CTL(ME) - (w*Cd) - (C(@J = J)CTw) - (w*CJCTw) - (CJCTdw/dt) ]

de/dt = O (188)
dv,/dt = [(Fm)z - (Zm"dl'.‘./dt)z - ((dw/dt) "rT)z - (m"wxl’.r) z]

dri/dt = v,

These state equations are coupled and nonlinear, and also have time
varying coefficients. They have been left in the full nonlinear form as
a linearization would have put constraints upon the magnitudes of the
rates and attitudes for which the equations are valid. A linearization
is usually employed when the goal is a stability analysis of the system.
In this case we are assuming that whatever control system is employed
will be able to deal with any passive instability of the space station.
The equations are in a form which is suitable for numerical integration
in order to determine the time history of the state; w, Q, 8, vy, r;.
Once this is known, the momentum buildup on the space station due to the

modeled disturbance torques may be found.
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